The Preparation and Characterisation of XeF₂.WOF₄ and XeF₂.2WOF₄ by ¹⁹F Nuclear Magnetic Resonance and Raman Spectroscopy. Examples of Non-labile Xenon-Fluorine-Metal Bridges.

By JOHN H. HOLLOWAY,* GARY J. SCHROBILGEN, and PAUL TAYLOR (Department of Chemistry, University of Leicester, Leicester LE1 7RH)

Summary Raman and ¹⁹F n.m.r. spectroscopy show that the adducts XeF₂·WOF₄ and XeF₂·2WOF₄, both in the solid state and in solution, are best formulated as covalent structures containing Xe---F---W bridges. ¹⁹F n.m.r. spectra of XeF₂·2WOF₄ dissolved in SO₂ClF also show that complex equilibria involving Xe-O-W and Xe---F---W bridged species occur.

THE only previously reported adducts of XeF_2 involve the interaction of XeF_2 with a pentafluoride to form adducts $2XeF_2 \cdot MF_5$, $XeF_2 \cdot MF_5$, and $XeF_2 \cdot 2MF_5$ (M = As, Sb, Nb, Ta, Pt, Ir, *etc.*).¹ The structures of these compounds have been interpreted in terms of ionic formulations involving the $Xe_2F_3^+$ and XeF^+ cations and the MF_6^- and $M_2F_{11}^-$ anions.

The XeF⁺ compounds contain a weak covalent interaction, through a fluorine bridge, between the anion and the cation.² Low temperature ¹⁹F n.m.r. studies reveal, however, that the Xe---F---M fluorine bridge interaction is labile in solution.³ Tungsten oxide tetrafluoride behaves as a fluoride acceptor and both the mononuclear WOF₅⁻ anion^{4,5} and the fluorine-bridged dinuclear W₂O₂F₉⁻ anion^{5,6} have been previously characterised by ¹⁹F n.m.r. spectroscopy. Since it was anticipated that these anions would be stronger fluoride-ion bases than MF₆⁻ or M₂F₁₁⁻, we have investigated the reaction of WOF₄ with XeF₂ in the hope that adducts containing non-labile fluorine bridges in solution would result.

Stoicheiometric amounts of XeF_2 and WOF_4 react in HF at room temperature and in the melts at 30—75 °C to give stable, white, crystalline solids at room temperature which have the compositions XeF_2 ·WOF₄ and XeF_2 ·2WOF₄. No evidence for 2XeF·WOF₄ was obtained in the present work.

The low-temperature ¹⁹F n.m.r. spectra of solutions of XeF_2 ·WOF₄ in BrF_5 and SO_2ClF have been studied. In addition to the solvent line(s) both solutions showed a doublet of quintets and a doublet in the F-on-Xe^{II} region and a doublet in the F-on-W region of the spectrum. The three environments had relative intensities of 1:1:4, respectively, and constituted an AMX₄ spin system with accompanying ¹²⁹Xe and ¹⁸³W satellites. XeF_2 ·WOF₄ is, therefore, best represented as a covalent species (I) in solution rather than as the ionic formulation (II) and is of particular interest since it contains a bridging fluorine atom.

As in the case of $Xe_2F_3^+$, (ref. 3) the low-field F-on-Xe^{II} environment is assigned to the bridging fluorine while the high-field environment is assigned to the terminal fluorine. The assignments are confirmed by the observation of coupling between the bridging fluorine (two 1:4:6:4:1 quintets) and the equatorial fluorines on tungsten (doublet) and are, therefore, unambiguous.

Details of the X-ray crystallographic investigation of XeF_{2} ·WOF₄ will be published elsewhere.⁷ The XeF_{2} ·WOF₄ structural unit has approximately C_{8} symmetry. The terminal Xe–F bond length (1·89 Å), which is less than that of XeF₂ (2·00 Å), is similar to the terminal Xe–F bond length (1·90 Å) observed in $Xe_{2}F_{3}$ +AsF₆⁻ (ref. 8) while the Xe--F bridge bond length (2·04 Å) is shorter than the Xe--F bridge bonds in $Xe_{2}F_{3}$ + (2·14 Å) and somewhat longer than the Xe--F bonds of XeF₂. The W--F--Xe bridge angle (147°) is also similar to that of the Xe--F--Xe bridge angle in the $Xe_{2}F_{3}$ + cation (151°).

The covalent nature of the fluorine bridge bonds in XeF_2 ·WOF₄ is further substantiated by the observation of vibrational modes in the Raman spectrum which can be associated with the fluorine bridge. The Raman spectrum of the linear F-Xe---F portion of the molecule (C_s site symmetry) is characterised by a strong factor-group split band at 573(100), 577(83) cm⁻¹ assigned to the terminal, totally symmetric Xe-F stretching mode, a weak band at 458(8) cm⁻¹ assigned to the bridging Xe---F stretching mode and a broad weak band at 153(14) cm⁻¹ which is assigned to the two F-Xe---F bending modes expected for a molecule with a bent fluorine bridge. The equivalent frequencies for Xe₂F₃⁺ (ref. 2) occur at 585 (sym. str.), 418 and 162 cm^{-1} and are in substantial agreement with the corresponding modes in XeF₂·WOF₄. It is of interest to note that the terminal Xe-F stretching frequency of XeF₂·WOF₄ is intermediate between that of XeF⁺ compounds and XeF₂, that the bridging Xe---F stretching frequency occurs at a somewhat lower frequency than XeF₂ and that the W---F bridging stretching frequency, 439(11) cm⁻¹, is considerably less than $v_1(a_{1q})$ of WF₆, 771 cm⁻¹. The factor-group split band at 1044(14), 1033(56)cm⁻¹ is assigned to the W=O stretching mode. These observations are in accord with the X-ray crystal investigation⁷ which show the terminal Xe-F bond to have a length between that of XeF₂ and XeF+, the bridging Xe---F bond being slightly longer than those of XeF₂ and the axial W-F bond be substantially shorter than the W---F bond in XeF₂·WOF₄ $(2.18 \text{ Å}, 439 \text{ cm}^{-1}).$

Dissolution of XeF₂·2WOF₄ in SO₂ClF resulted in a complex ¹⁹F n.m.r. spectrum at -107° . In addition to lines associated with the fluorine-bridged structures (I) and (IV) and free WOF₄, lines attributable to the oxygen-bridged structures (V) and (VI) were also present. The spectrum is the result of a complex series of equilibria among structures (I), [(IV)-(VI)] and WOF₄. Although it has not yet been possible to assign the F-on-W region of the spectrum

TABLE ¹⁹F N.m.r. parameters for XeF₂·WOF₄ and XeF₂·2WOF₄

Solute conc/m temp./°C	Structure	Chemical shift /p.p.m. ^a	∫ FF ∕Hz	∫139 _{Xe~} 19 _F /Hz
XeF ₂ ·WOF ₄ BrF ₅ (0·99) -62°	(I)	А 228.7 Д	275 50·4	6128
		M 168·9		5016
		X ₄ −65·3 ^b }		
	ſ	A 226.2 279	6150	
	(I)	M 168·1°	49	5000°
		$X_4 - 66.3$		
XeF ₂ ·2WOF ₄ SO ₂ ClF(0·64) -107°	(IV ^d)	A 237.0	279	6260
]	M 168·1°∫		5000°
	(V)d,e	244.4		6330
	(VI) ^d ,e	240.8		6315
	{ WOF₄	73.4		

^a Spectra recorded at 94.1 MHz and referenced with respect to external CFCl₃. ^b J¹⁸³W-¹⁹F is 69 Hz. ^c The environments are nearcoincident; additional fine structure due to spin-spin coupling with fluorine on tungsten was visible on each branch of the overlapping doublets arising from the Xe---F---W bridges. ^d Assignments for the fluorine-on-tungsten environments of structures [(IV)--(VI)] are not given in the present work. ^e Assignments are tentative.

being abnormally long in comparison to the equatorial W-F bonds.

From the distribution of bond lengths and the spectroscopic data, it is clear that structure (II) is not a major contributing valence-bond structure and a description in terms of the major valence-bond structures (I) and (III) is more appropriate.

The Raman spectrum of solid XeF₂·2WOF₄ is consistent with the fluorine-bridged structure (IV). The F-Xe---F modes of XeF₂·2WOF₄ are v(Xe-F) 585(100), v(Xe--F) 409(5) and δ (F-Xe---F) 144(5), 154(9) cm⁻¹. The two W=O stretching modes expected for structure (IV) were observed at 1044(24) and 1052(49) cm⁻¹. A line at 541(1) cm^{-1} can be assigned to v (W---F). The W---F bridge bond cis to the oxygen in structure (IV) therefore is expected to

unambiguously, the ${}^{19}\mathrm{F}$ n.m.r. parameters for the F-on-Xe region and their assignments are given in the Table. In addition to XeF₂·WOF₄ and the fluorine-bridged XeF₂- $\cdot 2WOF_4$ isomer, the $Kr_2F_3^+$ (ref. 9) and $Xe_2F_3^+$ (ref. 3) cations, which have recently been characterised by ¹⁹F n.m.r. spectroscopy in BrF_5 solution, are the only other noble-gas species which have thus far been shown to possess non-labile fluorine bridges in solution.

Attempts to prepare the KrF₂ analogues were unsuccessful. The reaction of KrF_2 with WOF₄ in HF at -78° is vigorous resulting in the formation of Kr, WF₆ and oxygen according to the equation

$$KrF_2 + WOF_4 \rightarrow Kr + WF_6 + \frac{1}{2}O_2$$

(Received, 4th November 1974; Com. 1341.)

¹ N. Bartlett and F. O. Sladky, 'Comprehensive Inorganic Chemistry,' ed. J. C. Bailar and A. F. Trotman-Dickenson, Pergamon Press, Oxford, 1973, vol. 1, p. 213.

ł

- J. I. Darragh, A. M. Noble, D. W. A. Sharp, and J. M. Winfield, J. Inorg. Nuclear Chem., 1970, 32, 1745.
 P. A. Tucker, P. A. Taylor, J. H. Holloway, and D. R. Russell, Acta Cryst. (B), submitted for publication.
 N. Bartlett, B. G. DeBoer, F. J. Hollander, F. O. Sladky, D. H. Templeton, and A. Zalkin, Inorg. Chem., 1974, 13, 780.
- ⁹ R. J. Gillespie and G. J. Schrobilgen, J.C.S. Chem. Comm., 1974, 90.

² R. J. Gillespie and B. Landa, Inorg. Chem., 1973, 12, 1383; R. J. Gillespie and G. J. Schrobilgen, ibid., in the press; R. J. Gillespie, ¹ C. J. Ginespie and D. Landa, *Inorg. Chem.*, 1976, 12, 1966, 14, 1966, 14, 1976, 14, 1966, 14, 1976, 14, 1976, 14, 1976, 14, 1976, 14, 1976, 14, 1976, 14, 1976, 15, 1976, 16, 1976, 17